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Radial basis function interpolation has attracted a lot of interest in recent years.
For popular choices, for example thin plate splines, this problem has a variational
formulation, i.e. the interpolant minimizes a semi-norm on a certain space of radial
functions. This gives rise to a function space, called the native space. Every function
in this space has the property that the semi-norm of an arbitrary interpolant to this
function is uniformly bounded. In applications it is of interest whether a sufficiently
smooth function belongs to the native space. In this paper we give sufficient condi-
tions on the differentiability of a function with compact support, in the case of
cubic, linear and thin plate splines. In the case of multiquadrics and Gaussian func-
tions, it is shown that the only compactly supported function that satisfies these
conditions is identically zero. � 2001 Academic Press

1. INTRODUCTION

Let n pairwise different points x1 , ..., xn # Rd be given, where n and d are
any positive integers. Further, let *1 , ..., *n be real numbers, p be in 6m , the
space of polynomials of degree at most m, and denote the Euclidean norm
by &.&. A radial basis function is of the form

s(x)= :
n

i=1

*i ,(&x&x i&)+ p(x), x # Rd. (1.1)

In this paper we consider the following choices of ,:

,(r)=r (linear),

,(r)=r3 (cubic),

,(r)=r2 log r (thin plate spline), = r�0. (1.2)

,(r)=- r2+c2 (multiquadric),

,(r)=e&r2
(Gaussian),
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Let the matrix 8 # Rn_n be defined by

(8) ij :=,(&xi&xj&), i, j=1, ..., n. (1.3)

In all the cases in (1.2), 8 is conditionally definite. Specifically, letting m0

be 1 in the cubic and thin plate spline case, 0 in the linear and multiquadric
case and &1 in the Gaussian case, we obtain (see e.g. [5])

(&1)m0+1 *T8*>0, (1.4)

if * # Rn is any nonzero vector that satisfies

:
n

i=1

*iq(xi)=0 \q # 6m , (1.5)

where 6&1 is the space that contains only the zero function. We choose m
to be an integer that is not less than m0 .

Now fix n # N and the centres x1 , ..., xn # Rd. The interpolation problem
can be posed in the following way. Find a radial basis function s of the
form (1.1) that satisfies

s(xi)= f i , i=1, ..., n
(1.6)

:
n

i=1

*iq(xi)=0, q # 6m

Let m̂ be the dimension of 6m . Further, let p1 , ..., pm̂ be a basis of this
linear space. The matrix P is defined by

p1(x1) } } } pm̂(x1)

P :=\ b b + .

p1(xn) } } } pm̂(xn)

In the Gaussian case with m=&1, P is omitted. Further, let F # Rn be the
vector whose entries are the data values f1 , ..., fn . Therefore the system
(1.6) can be written as

\ 8
PT

P
0+ \

*
c+=\ F

0m̂+ (1.7)

where * # Rn has the components *i , where c # Rm̂ and where 0m̂ is the zero
in Rm̂. The components of c are the coefficients of the polynomial p with
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respect to the basis p1 , ..., pm̂ . Powell [5] shows that the interpolation
matrix

A=\ 8
PT

P
0+ # R(n+m̂)_(n+m̂) (1.8)

is nonsingular for any prescribed m�m0 , if and only if x1 , ..., xn satisfy

q # 6m and q(xi)=0, i=1, ..., n O q#0. (1.9)

An interesting and useful property is that the radial basis function that
solves the interpolation problem (1.6) is the solution of a minimization
problem. For any choice of , in (1.2) and m�m0 , let us define the linear
space A,, m as the space of functions of the form

:
N

i=1

*i,(&x& yi &)+ p(x), x # Rd,

where N is any positive integer, where y1 , ..., yN are any pairwise different
points in Rd, where p is any polynomial in 6m and where *=(*1 , ..., *N)T

satisfies

:
N

i=1

*iq( yi)=0 \q # 6m . (1.10)

On this space a semi-inner product and a semi-norm can be defined. Let
s and u be any functions in A,, m , i.e.

s(x)= :
N(s)

i=1

*i ,(&x& yi &)+ p(x) and u(x)= :
N(u)

j=1

+j,(&x&zj&)+q(x).

The semi-inner product is the expression

(s, u) :=(&1)m0+1 :
N(s)

i=1

*iu( y i). (1.11)

Clearly, it is bilinear. To show symmetry, by employing

:
N(s)

i=1

*iq( yi)=0 and :
N(u)

j=1

+ jp(zj)=0,
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we deduce

(s, u) =(&1)m0+1 :
N(s)

i=1

*i \ :
N(u)

j=1

+j,(&y i&zj&)+q( y i)+
=(&1)m0+1 :

N(s)

i=1

:
N(u)

j=1

* i +j ,(&yi&zj&)

=(&1)m0+1 :
N(u)

j=1

+j \ :
N(s)

i=1

* i,(&zj& yi&)+ p(z j)+
=(&1)m0+1 :

N(u)

j=1

+js(z j)=(u, s).

By (1.4), the expression

(s, s)=(&1)m0+1 :
N(s)

i=1

*is( yi)=(&1)m0+1 :
N(s)

i, j=1

*i*j,(&yi& yj &) (1.12)

is strictly positive, if * satisfies (1.5) for n=N(s) and any m�m0 . Thus
(1.11) is indeed a semi-inner product. Then ((s, s) )1�2 is a semi-norm on
the space A,, m with null space 6m .

Schaback [7] shows that the solution of (1.6) can be characterized as
follows.

Theorem 1. Let , be any function from (1.2), and let m be chosen such
that m�m0 . Given are points x1 , ..., xn in Rd that satisfy (1.9) and values
f1 , ..., fn in R. Let s be the radial function of the form (1.1) that solves the
system (1.6). Then s minimizes the semi-norm ( g, g) 1�2 on the set of func-
tions g # A,, m that satisfy

g(xi)= fi , i=1, ..., n. (1.13)

Proof. Let g(x) :=�n(g)
j=1 +j,(&x& y j&)+q(x) # A,, m satisfy (1.13). We

consider the semi-norm of g&s. Since s(xi)= g(x i), i=1, ..., n, it has the
value

( g&s, g&s)=( g, g)&2( g, s)+(s, s)

=( g, g)+(s, s)&2(&1)m0+1 :
n

i=1

*ig(xi)

=( g, g)+(s, s)&2(&1)m0+1 :
n

i=1

*is(xi)

=( g, g)+(s, s)&2(s, s)

=( g, g)&(s, s). (1.14)
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Thus, we deduce the required condition

(s, s)=( g, g)&( g&s, g&s)�( g, g). K

One can associate with a particular , in (1.2) and m�m0 an interesting
function space, the so-called native space N,, m (see Schaback [8]).
Schaback and Wendland [9] show that it can be characterized as the
space of all functions F : Rd � R for which the following condition holds.

Condition 2. There exists a real number C, that only depends on F,
such that, for any choice of interpolation points x1 , ..., xn # Rd for which
(1.9) holds, the interpolant sn to F at these points satisfies

(sn , sn) �C.

For many types of radial basis functions, it is unknown what functions
F belong to N,, m . It is the subject of this paper to prove Condition 2 for
sufficiently differentiable functions F. A useful application of the results
presented here is given by a method for global optimization (Gutmann
[2]). Here the global minimum of a continuous function f : D � R is
sought, where D/Rd is compact. If x1 , ..., xn # D and their function values
have been calculated, the next point xn+1 is determined as follows. Choose
an estimate of the global minimum, f * say. For each y # D"[x1 , ..., xn]
there exists a radial basis function sy # A,, m that interpolates (x1 , f (x1)), ...,
(xn , f (xn)) and ( y, f *). We take the view that the ``least bumpy'' of these
interpolants yields the most promising location for evaluating the objective
function. The ``bumpiness'' of sy is measured by its semi-norm. This means
that xn+1 minimizes (sy , sy) , y # D"[x1 , ..., xn]. A crucial part of the
proof of convergence of this method is to show that suitable functions with
bounded support satisfy Condition 2. Another use is that the assumptions
that guarantee convergence can be weakened if the objective function f
itself satisfies Condition 2.

In Section 2 we use Fourier transforms to give a condition that guaran-
tees that a function F is in the native space. Results for particular types of
radial basis functions are derived in Section 3, with a special emphasis on
functions with bounded support because of their importance for the global
optimization method described above.

Multi-index notation will be used in the following sections. For a multi-
index :=(:1 , ..., :d)T # Nd, the order |:| and the factorial :! are defined as

|:| := :
d

i=1

:i and :! := `
d

i=1

: i !.
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The power x:, x # Rd, and the derivative D:u(x) for a sufficiently smooth
function u : Rd � R are

x: := `
d

i=1

x:i
i and D:u(x) :=

� |:| u(x)
�x:1

1 } } } �x:d
d

,

respectively.

2. A SUFFICIENT CONDITION

For an absolutely integrable function f : Rd � R, the Fourier transform f�
is defined as

f� (t) :=|
R d

f (x) e&ixTt dx, t # Rd. (2.1)

Among the choices of , in (1.2), ,(&.&) is absolutely integrable only in the
Gaussian case. However, in all cases, ,(&.&) has a generalized transform
,� (&t&), t # Rd "[0]. The values of ,� are (see Powell [5])

,� (r)=C r&d&1 (linear),

,� (r)=C r&d&3 (cubic),

,� (r)=C r&d&2 (thin plate spline), = r>0. (2.2)

,� (r)=C (c�r)(d+1)�2K(d+1)�2(cr) (multiquadric),

,� (r)=C e&r2�4 (Gaussian),

In each case C is a constant that does not depend on t and c, and r=&t&,
t # Rd. K(d+1)�2 is a modified Bessel function that is positive for r>0, and
that decays exponentially as r tends to infinity (Abramowitz and Stegun
[1]).

To derive a sufficient condition for functions to be in the native space,
we use the following criterion that is part of Theorem 8.1 in [8].

Proposition 3. Let F : Rd � R be continuous, and assume there exists a
real number CF , such that, for any choice of points x1 , ..., xn # Rd and
numbers *1 , ..., *n # R that satisfy (1.5), the inequality

} :
n

j=1

*jF(xj)}�CF \(&1)m0+1 :
n

i, j

*i*j ,(&xi&x j&)+
1�2

(2.3)

holds. Then F satisfies Condition 2, thus it is in the native space.
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Proof. Let x1 , ..., xn # Rd satisfy (1.9), and let s=�n
j=1 *j ,(&.&xj &)+ p

be the unique interpolant to F at these points. Then (2.3) implies

(s, s)= } :
n

j=1

*jF(x j) }�CF \(&1)m0+1 :
n

i, j

*i *j,(&xi&xj&)+
1�2

=CF (s, s) 1�2.

Thus (s, s) is bounded by C 2
F . As CF does not depend on the choice of

the interpolation points, Condition 2 holds. K

Further, a lemma is needed that provides an integral representation of
the semi-norm of a function in A,, m .

Lemma 4. Let , be any function from (1.2) and m�m0 . Then for
s=�n

i=1 *i ,(&.&x i&) # A,, m

(s, s)=\ 1
2?+

d

|
R d } :

n

j=1

*j eixj
Tt}

2

|,� (&t&)| dt.

Proof. See the proof of Theorem 4.5 in Schaback and Wendland [10].
K

The main result of this section is that the function space N�, defined
below is contained in the native space.

Definition 5. The linear space N�, is the space of continuous functions
f : Rd � R that are absolutely integrable and whose Fourier transform f�
satisfies

|
R d

| f� (t)|2 1

|,� (&t&)|
dt<�.

It is endowed with the inner product

( f, g) :=\ 1
2?+

d

|
Rd

f� (t) ĝ(t)
1

|,� (&t&)|
dt

that induces the norm

( f, f )1�2=_\ 1
2?+

d

|
R d

| f� (t)|2 1

|,� (&t&)|
dt&

1�2

.
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Remark 6. The Fourier transform of a function f # N�, is absolutely
integrable which can be shown as follows. If we denote the closed unit ball
by B and observe that ,� (&.&) is in L1(Rd "B) in all the cases in (2.2), we
find

|
Rd

| f� (t)| dt=|
B

| f� (t)| dt+|
Rd"B

| f� (t)|

- |,� (&t&)|
- |,� (&t&)| dt

�|
B

| f� (t)| dt+\|Rd"B
| f� (t)| 2 1

|,� (&t&)|
dt+

1�2

_\|Rd"B
|,� (&t&)| dt+

1�2

<�.

In particular, the inverse Fourier transform theorem holds, i.e.

f (x)=\ 1
2?+

d

|
Rd

f� (t) e itTx dt, x # Rd.

Now we can show that all functions in N�, are in N,, m .

Theorem 7. Let , be any function from (1.2) and m�m0 . Then every
function F # N�, satisfies Condition 2, thus it is in N,, m .

Proof. We show that the condition of Proposition 3 holds. Let points
x1 , ..., xn # Rd and real numbers *1 , ..., *n be given that satisfy (1.5).
Remark 6 states that the inverse Fourier transform formula for F holds.
Thus

:
n

j=1

*jF(x j)=\ 1
2?+

d

|
Rd

F� (t)\ :
n

j=1

* j eitTxj+ dt.

=\ 1
2?+

d

|
R d

F� (t)
1

- |,� (&t&)|
- |,� (&t&)| \ :

n

j=1

*j eitTxj+ dt.

The Cauchy�Schwarz inequality for L2(Rd) and Lemma 4 imply

} :
n

j=1

*j F(xj)}�(F, F )1�2 \\ 1
2?+

d

|
R d } :

n

j=1

* je itTxj }
2

|,� (&t&)| dt+
1�2

=(F, F )1�2 \(&1)m0+1 :
n

i, j=1

*i* j,(&x i&x j&)+
1�2

.
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By setting CF=(F, F )1�2 the assumption of Proposition 3 is satisfied which
proves the theorem. K

3. RESULTS FOR PARTICULAR TYPES OF
RADIAL BASIS FUNCTIONS

In the linear, cubic and thin plate spline cases, a large class of functions
is in the native space. Specifically, let }=1 in the linear case, }=2 in the
thin plate spline case and }=3 in the cubic case. Then the following result
holds.

Theorem 8. Let ,(r)=r, ,(r)=r2 log r or ,(r)=r3, and let m�m0 . Let
F # C &(Rd), with &=(d+})�2, if d+} is even, or &=(d+}+1)�2, if d+}
is odd, where } is defined above. Assume that F and all derivatives D:F,
|:|�&, are absolutely integrable, and that D:F is in L2(Rd), |:|=&. Then F
is in N,, m .

Proof. It will be proved that F is in the linear space N�, . Integration by
parts shows that the Fourier transform F� satisfies

D:F@ (t)=(it): F� (t), t # R d, (3.1)

for any multi-index : with order |:|=&. Also, as D:F is in L2(Rd), the
Plancherel formula gives

\ 1
2?+

d

|
Rd

|D:F@ (t)|2 dt=|
Rd

|D:F(x)|2 dx<�, |:|=&. (3.2)

Moreover, expression (2.2) states that ,� has the form

,� (&t&)=
C

&t&d+} , t # Rd "[0],

for a constant C, and a generalization of the binomial formula provides

&t&2&= :
|:| =&

&!
:!

t2:, t # Rd.
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Thus, if d+} is even, the term (F, F ) of Definition 5 has the value

(F, F )=\ 1
2?+

d

|C| &1 |
R d

|F� (t)|2 &t&2& dt

=\ 1
2?+

d

|C| &1 :
|:|=&

&!
:! |R d

|F� (t)|2 |t:|2 dt

=\ 1
2?+

d

|C| &1 :
|:|=&

&!
:! |R d

|D:F@ (t)| 2 dt<�.

Analogously, if d+} is odd, one obtains

(F, F)=\ 1
2?+

d

|C| &1 :
|:|=&

&!
:! |R d

|D:F@ (t)| 2 1
&t&

dt. (3.4)

For each multi-index : with order &, (3.1) shows that limt � 0 |D:F@ (t)| 2

&t&&1=0. It follows from (3.2) that (F, F ) is finite. Thus, in both cases,
F # N�, . Therefore Theorem 7 shows that F # N,, m . K

If a smooth function has bounded support, then its derivatives are in
L1(R d) and L2(Rd). Thus we obtain

Corollary 9. Let ,, m and & be as in Theorem 8. If F # C &(Rd) has
bounded support, then F # N,, m .

The corollary includes some well-known special cases including the
following one.

Remark 10. Consider natural cubic splines in one dimension, i.e. d=1,
,(r)=r3 and m=1. The variational principle (e.g. Powell [4]) states that
for F # C2(R) with bounded support, the cubic spline interpolant s at
finitely many points satisfies

|
R

s"(x)2 dx�|
R

F"(x)2 dx.

It can be shown easily that the left hand side equals 12(s, s). Thus the
constant (1�12) � F"(x)2 dx is a uniform bound on (s, s) . The existence of
such a bound is included in Corollary 9, and the corollary also holds for
m�2.

In the multiquadric and Gaussian cases, however, there is no useful class
of functions with bounded support. In these cases, ,� (&t&) decays exponen-
tially, as &t& � �. One can show that the only function in N�, with
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bounded support is the zero function. This follows from a Paley�Wiener
theorem (see Katznelson [3] for a one-dimensional version).

Theorem 11. Let F : Rd � R be continuous and compactly supported,
and let e;&.&F� # L2(Rd) for some ;>0. Then F#0.

Proof. The assumption e;&.&F� # L2(Rd) shows that F� is absolutely
integrable. Therefore the inverse Fourier transform formula

F(x)=\ 1
2?+

d

|
Rd

F� (t) eitx dt, x # Rd, (3.3)

holds.
Let D :=[z # C : |Im z|<;]. For any arbitrary v # Rd with &v&=1 define

g : D � C as

g(z)=\ 1
2?+

d

|
Rd

F� (t) ei(zv)Tt dt, z # D.

We show that g is well-defined and continuous on D. For z # D

|
Rd

|F� (t) eiz(vTt)| dt=|
Rd

|F� (t) e&Im z(vTt)| dt

=|
Rd

|F� (t) e;&t&| |e&;&t& e&Im z(vTt)| dt

�&F� e;&.&&L2(Rd) \|Rd
e&2(Im z+;)&t& dt+

1�2

.

The right hand side is finite, so g is well-defined on D. The continuity of
g can be deduced as follows. Fix z # D. Then there is : # R such that
|Im z|<:<;. For w # D sufficiently close to z, |Im w|<:, which provides
the bound

|F� (t) eiw(vTt)|=|F� (t)| e&(vTt) Im w�|F� (t)| e:&t&, t # Rd.

The function on the right hand side is integrable, because a similar argu-
ment as above gives

|
R d

|F� (t)| e:&t& dt=|
R d

|F� (t) e;&t&| e&(;&:)&t& dt

�&F� e;&.&&L2(Rd ) \|R d
e&2(;&:)&t& dt+

1�2

<�.
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Therefore, as w tends to z, the dominated convergence theorem implies

g(z)=\ 1
2?+

d

|
Rd

lim
w � z

F� (t) eiw(vTt) dt

= lim
w � z \

1
2?+

d

|
Rd

F� (t) eiw(vTt) dt= lim
w � z

g(w).

Thus g is continuous on D.
Further, Morera's Theorem (see e.g. Rudin [6]) shows that g is analytic

on D. Let T be any triangle in the interior of D, and denote its boundary
by �T. Then, by Fubini's Theorem,

|
�T

g(z) dz=\ 1
2?+

d

|
�T

|
R d

F� (t) ei(zv)Tt dt dz

=\ 1
2?+

d

|
Rd

F� (t)|
�T

ei(vTt) z dz dt=0,

because ei(vTt) z is analytic for every t # Rd. As T is arbitrary, g is analytic.
Now choose {* # R such that {*v is outside the support of F. Because g

and F(. v) coincide on the real line, g and all its derivatives vanish at {*.
Therefore the Taylor expansion of g around {* yields that g#0 on D. Thus
F({v)=0 for all { # R. Because v has been chosen arbitrarily, this proves
the theorem. K

It follows that in the multiquadric and Gaussian cases N�, contains no
nonzero function with compact support.

Corollary 12. Let ,(r)=- r2+c2 or ,(r)=e&r2
. If F # N�, has bounded

support, then F#0.

Proof. In both cases considered here, ,� (& .&) decays exponentially, i.e.
there exist ;>0 and K>0 such that

|,� (&t&)|�Ke&2;&t&, t # Rd"B, (3.4)

where B is the closed unit ball. Now F # N�, provides

|
Rd"B

|F� (t)| 2 e2;&t& dt�K |
Rd "B

|F� (t)| 2 1

|,� (&t&)|
dt<�.

It follows that e;&.&F� # L2(Rd). Theorem 11 now implies the required result. K
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4. CONCLUSIONS

We have introduced a new technique to prove Condition 2 for sufficiently
smooth functions with bounded support. It provides an extension of well-
known results in the linear, cubic and thin plate spline cases. In particular, the
choice of m is less restricted than before.

The situation in the multiquadric and Gaussian cases, however, is disap-
pointing. The exponential decay of ,� prevents a uniform bound on the
semi-norms when F has bounded support. As mentioned in the introduction,
the application to global optimization we have in mind requires Condition
2 for such functions. Thus the presented approach is not useful in these cases.
In the other cases the question arises whether there exist functions that are
not in N�, but still satisfy Condition 2. In particular, it is interesting to
investigate how the semi-norm behaves when F is less differentiable than
required by Theorem 8.
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